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Abstran We have investigated the current distribution and local power dissipation in the 
two-component deterministic perwlatiou model in which the ratio of conductance k is 
regarded as a small parameter. The iterative nature of the model enables us to find exact 
recursion relations for the current distribution. For an extremelysmall k such that hL*< 1, 
where L is the size of the lattice and @ the crossover exponent, we find that D(a)= 
exp(-A(a- B ( b g  L)’]/(Iog L)’), where D(a) d a  is the number of currents with a<  
-logI,<a+da;I,isthecurrentinbondiandA, Baremnstants.Themrrentdistribution 
is well approximated by a Gaussian with the mean varying with the size as (log L)2 while 
the variance as (log L)3. As a result, both the most probable current and the minimum 
current scale with L as exp[-constant (IogL)‘]. Similar results are obtained for the 
distribution of local power dissipation. 

1. Introduction 

The study of current distribution in the random resistor network (RRN) near the 
percolation threshold has recently received interest as it reveals very rich structures 
[1,2] common in many disordered systems near a critical point. Recently, similar 
studies have been extended to the two-component RRN, in which the effect of the non- 
zero conductance of insulating bonds is taken into account 13-61. To be more precise, 
we consider a two-dimensional lattice (the generalization to arbitrary dimensions is 
straightforward) and we associate with each bond a conductance us with probability p 
and up with probability 1-p where us is the conductance of good conducting bonds 
while U, is that of the poor conducting bonds and u8>ur The conductance ratio 
h = up~us governs the crossover from the fractal (h = 0) to homogeneous (h = 1) 
behaviours. 

It has been found that all positive multifractal moments of current scale with a 
single crossover exponent [3-51. However, the scaling of negative moments has not 
been studied. The negative moment of the current distribution is dominated by the 
minimum current, which is in general very difficult to determine accurately in 
numerical simulation. By employing a new method, we have succeeded in obtaining 
the minimum current in the two-component RRN [6] .  The minimum current is found to 
scale anomalously with the conductance ratio h as I,,(h)=exp[-constant (log h)*] .  
The exponential behaviour indicates that the minimum current falls off faster than any 
power law. in fact such an anomalous scaling behaviour is quite similar to that in 

0305-3470/931174223+ 13 $07.50 0 1993 IOP Publishing Ltd 4223 



4224 

diffusion-limited aggrega~ons [7] .  The minimum growth-site probability scales with 
system size as exp[-A(log L)']. This leads to the failure of conventional multifractal 
analysis [8-91 as the negative moments do not scale with system size as a power law 
[7]. In view of this, we shall use an alternative approach to analyse the problem. 

The organization of the paper is as follows. We investigate the current distribution 
of the two-component deterministic percolation model (DPM), the construction of 
which will be described in the next section. We briefly discuss the renormalization 
group transformation of the network conductance. In section 3, we study the scaling 
and crossover behaviours of the minimum current. In section 4, we derive the 
recursion relations for the current distribution and obtain an analytic solution by using 
the generating function technique [ l o ] .  The distribution is well approximated by a 
Gaussian with its mean varying as exp[-A(logL)'] and variance goes as (log t)3. In 
sections 5, we perform similar studies for the distribution of local power dissipation. 
We shall discuss the generality of the results and suggest numerical simulation be done 
to check the analytical results. The possibility of comparison with experiment will also 
be discussed. 

K W Yu and P Y Tong 

2. The determinstic percolation model (DW 

The deterministic percolation model (DPM) is an extension of the fractal lattice, 
originally proposed by Kirkpatrick I l l ]  to model the percolation backbone. Here we 
follow Clerc et al [6,12] to extend the constructions to the two-component case. 
Starting with a filled square, one divides it into four equal squares and replaces the 
upper right quadrant by an empty square to obtain the first generation. The lateral 
size is increased by a factor of two. The second generation is obtained from the first 
generation by replacing each square by two types of generators. The generator for a 
filled square is exactly the same as the first generation but the generator for an empty 
square is complementary to that of the filled square, i.e. the upper right quadrant is 
filled while the rest are empty. The process is repeated ad infinitwn to obtain the 
deterministic lattice. 

An equivalent circuit model [6,12] is shown in figure l (a )  in that the good 
conducting bond at the right is a parallel combination of  (4f-2)  good conductors 
while that at the left has 4(1 -j) poor conductors, where f is a filling factor and 
t<f<1. Similar notations are used in figure 1(b) to model the poor conducting 
bonds. Starting with a finite deterministic lattice at the nth generation, we can use a 
renormalization group (RG) method to obtain the renormalized conductance of the 
( n  - 1)th generation (i.e. first level of renormalization). From figures l(a) and (b),  
the impedance of the good conductor Xh and that of the poor conductor Y ,  at the kth 
level of renormalization are related to those of the (k- 1)th level of renormalization 
by the following recursion relations [6,12] 
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U 

Figure 1. The renormalization process of the two-component deterministic percolation 
model: (a) good conductor-good conductor, (b)  poor conductor-tpor conductor. 
(c)  the four currentS in a typical element. 

If we denote hx = Xkl Y,, we arrive at a recursion relation for h, 

h k = S ( h k - l )  (2) 

where S(h) is a one-parameter iterated map [6,12] 

One can easily show that h = 1 is a stable fixed point while h = 0 is an unstable fixed 
point of the map S(h) [6 ,12] .  The multipliers associated with the fixed points at h = 1 
and h = 0 are given by 2 ,  = 2 f -  1 and A,, = 2f/(2f- 1) respectively. Physically, the 
unstable fixed point at h = 0 corresponds to the interesting cases of the random resistor 
network limit in which the poor conductor has no finite conductance, and the random 
superconducting network limit in which the good conductor has an infinite conduc- 
tance. We are interested in the scaling region with a small but finite initial value ho (in 
the vicinity of the h = 0 unstable fixed point) in a finite network so that the subsequent 
flow to the h = 1 fixed point leads to a crossover from fractal to homogeneous 
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behaviour [6]. 
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For convenience of subsequent studies, we define a function q(h)  [6,12] such that 

(1 - f M  +f 
dh) =2(1 - a h  + (2f- 1)' (4) 

3. The minimum current 

In this section, we obtain the complete set of currents by using elementary circuit 
analysis. Let Ik be the current at the kth level of renormalization. From figure l(c), 
the four currents in the good conductor are given by 

I ,  = I@ = &* 1. (54 
Similarly, the four currents in the poor conductor are given by 

I k l =  (4f- 2) (9'(hk)hk/hh+l- +)Ih+l  

The maximum current is located at the first bond of the good conductors while the 
minimum current of the network is located at the first bond of the poor conductors 
(see figure 1) at any generation. A more comprehensive study of the minimum current 
can be found in [6]. Here we briefly summarize the result and interested readers are 
referred to [6]. The minimum current is given by [6] 

IkL')(ha) 
= exp( - (In &)'/2 In da)k&l;ha) l$l'(l) 

where da=2f/(2f- 1) is the multiplier associated with the unstable fixed point at h = 0. 
In figure 2, we plot the normalized minimum current I$ l ) (ha) / I$~ l ) ( l )  as a function 
of h&@ in a log-log plot, we can see that as n increases the curve crosses over from a 
rapidly decreasing region towards a constant. The crossover occurs clearly at n =  
n*(ho)=-Inho/ln,L,. In figure 3, we plot the rescaled minimum current 
( I $ ~ l ) ( h a ) / I k ~ l ) ( l ) )  exp (-(lnha)'/21nd~) against h&*, The collapse of all data on a 
universal curve is evident. 

4. Recursion relations for the current distribution 

in the preceding section, we discussed the scaling and crossover behaviours of the 
minimum current only. In this section, we shall focus on the size and conductance 
ratio dependence of the current distribution. We derive the recursion relations and 
obtain analytic solutions for the current distribution in the deterministic percolation 
model. 

At the kth level of renormalization, the lattice has a size 2'-'. Let us define the 
current distribution at the kth level of renormalization Dk(a) da as the number of 
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Figure 2. Log-log plot of the normalized minimum current I - ( h o ) / i ~ ~ ( l )  as a function of 
h,,L* for b= 1,lO-l. 10.‘ with n from 1 to 20 and f o r b =  lo-*, lo-‘’ with n from 1 to 
30. The filling factor isf=*. 

bonds carrying current with a < a i < a + d a  and a,=-logIi. For convenience of 
establishing recursion relations, we also denote Df(a) as the current distribution of the 
good conductors and DKa) that of the poor conductors so that Dk(a) = Df(a) + @(a). 
The recursion relation for Wda) and DKa) can be obtained from (5) and (6) directly. 
As we are interested in percolating configurations only, the initial conditions at the 
nth level of renormalization ( k = n )  are e(a)=6..0and &(a)=O. 

First, we consider the limit of large ho so that I;h,%-l and hence h n = l ,  the 
problem reduces to the trivial case of a one-component lattice. The current I ,  is just 
one half of IXcl from (5) and (6). Upon iterating the currents from the nth level of 
renormalization (i.e. as k decreases), the width of the distribution remains narrow 

LOg(hn”.l 

Flgure3. The rescaled minimum current plotted against hoL+ to show perfect data 
collapse. Same data is used as in figure 2. 
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until the number of iteration ( n - k )  reaches a typical value (n-n' )  where n*= 
-log ho/logdo. For ( n - k ) > ( n - n * ) ,  the iteration of currents begins to broaden the 
distribution. Without loss of generality, we therefore consider the opposite limit 
h,=&'hO41 and hence p(hh)=p(0) .  In this limit, the following expressions are 
asymptotically valid for OS k S n - 1 .  For f =  + and in the good conducting bonds 

K W Yu and P Y Tong 

Ih3=  I k 4 = ; I h + l  ( 8 4  

Ihi=hklkti ( 9 4  
I k 2 =  (p(0) - i ) I k + l  (9b) 
I k 3 =  I k 4 =  * I k t l .  (94 

while in the poor conducting bonds 

We take the logarithm of (8) and let a=-logIk and a'=-1ogIk+,, a '  being the 
pre-image of a. In this way, we obtain from the pre-images the contribution of current 
distribution at the kth level of renormalization. The recursion relation for the 
distribution functions are as follows (valid for OSkGn - 1). 

with initial conditions @(a) = 
for the distribution functions 

and E(a) = 0. Let us define the Laplace transform 

p,(s) = J - D:-,(a) e-'"da 
0 

at the mth generation with initial conditions go(s)=l and po(s)=O at the zeroth 
generation (m = 0). We obtain the recursion relations for g,(s) and p,(s): 

g&) = (1 +2e-"%-dS) +P,-I(S) (W 
p,(s) = e-sa~(n-m)gm-l(s) + (2 e-"~ + e-= I( " - 9Pm-1(S) (126) 

al(k)= a, - k log do ( 1 3 4  
ai=lloghoI (136) 

a*= log 2. (134 

where 

Note that a,(n-m) is not a constant coefficient while a2 and a ,  are independent of m. 
Let cm(s)=gm(s)+pm(s). In this way, we can calculate c&) from the recursion 
relations; Do(a) is obtained from the inverse Laplace transform of cn(,s). In what 
follows, we expand the relevant generating functions to second order in s and the 
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results are used to extract the large a (small current) behaviour of the current 
distribution. 

Let us expand the generating functions to second order in s 

g,(s)=g,(O)+A,,,s+Dd'+. . , ( 1 4 4  

p,(s) =pm(0)  + E d  + E d 2  + . . . . (14b) 

d o )  =3gm-dO) +P,-,(O) (154 

~ ~ ( 0 )  =gm-,(0) + 3pm-d0). (156) 

A,= 3A,-1 +B,-, -2ag,-,(O) (164 

and 

and upon identifying coefficients of the same order ins, we obtain for the zeroth order 

For the first order 

+3B,-, -a , (n-  m)g,-,(O) - (a l (n-m)  +2a2)p,-,(0). (16b) 
For the second order 

Dm=3D,-, +E,_ ,  - 2 a d , - ,  + a&,_,(O) (174 

+-l-a-or:(n-mlg,-l(O)+(a:+:af(n-m))p,-I(O) (176) 

E,- + 3E,-, -a,(n-m)A,-,  - (a l (n-m)  +2a2)B,- ,  

and so on. Note that the first-order coefficients depend on the zeroth-order coef- 
ficients while the second-order coefficients depend on the first- as well as the zeroth- 
order coefficients. Here we have expanded the generating functions to second order in 
s for simplicity. Higher-order expansions can, in principle, be obtained in essentially 
the same way, assisted by computer algebra. By using initial conditions, we arrive at 
A,,=Bo=Do=Eo=O. Moreover, let usdefine C,=A,+B,. We find that 

C,=4Cm-, - (adn-m)  + 2a2)(gm-,(0) + P , - ~ ( O ) ) .  (18)  
Similarly we define F, = D ,  + E, and obtain 

F, = 4F,_, - (a& - m) + 2a2)(A,-, + E,- , )  

+(a:+-l-a:(n-m))(g,-l(O)+p,-,(O)). (19) 

g,(O) = 4(4, + 2,) (204 

pm(0)=:(4m-2m). (20b) 

The general solutions for gm(0) and ~ ~ ( 0 )  are given by 

Physically gm(0) and ~ ~ ( 0 )  represent, respectively, the number of good and poor 
conducting bonds at the mth generation. The homogeneous solution for C, is 
C, = (Za') 4", while the particular solution should be of the form 

C, = (m(c,m + c2) + 4 4 , .  
With the initial condition Co=O, the general solution is given by 

C, = (m(clm + c2))4,. 

Similarly we obtain the second-order coefficient 

F, = (dlm4 t d2m3 + d3m2 + dp~)4".  
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Figure+ Current distribution in the deterministic percolation model as compared to the 
Gaussian approximation. The size L=Z8 and h= 

We are now in Josition to obtain the mean and the variance of the current 
distribution. Let us define the moment generating function c.(s) =g.(s) t p.(s) for 
which Da(a) is the inverse Laplace transform of e&). If we expand c&) to second 
order in s, we find 

c,(s) = c.(O) (I - (a)s + &a2)? + . . .) (23) 
where (a") is the mth moment of Do(.) 

(Q"')=~:Q'"D,,(Q) d a / l -  a Da(a) da. (24) 

The mean and variance of Da(a) can be identified as 

(a)=-C./4"=-(c,n2+c2n) 

and 

(a') - (~i)~=2F./4" - (Cn/4")2. 

It is remarkable to find that the mean of the current distribution varies with n as -nz, 
which is identical to the scaling form of the minimum current. Due to the fact that 
c1 = 2dl, the highest order term n' in the variance (a') - (a)' is cancelled out so that the 
variance varies as n3. 

the 
analytic calculation gives the C,= -9.864, F,=57.955, and (a')-(a)'= 18.606. In 
figure 4, we plot the histogram and compare with the theoretical Gaussian distribu- 
tion. Since the histogram for the numerical data is not smooth, we also plot the 
cumulative histogram in figure 5. There are two reasons for deviation from the 
Gaussian approximation. First, our expansion only goes to the second order ins, the 
approximation is only valid for small s and therefore large Q. Second, the model 
includes a small parameter ha, which is neglected in the present limit, so that the 
Gaussian approximation is not as good. 

Here we check the Gaussian approximation numerically. For n=8,  ho= 
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5. Local power dissipation 

In this section, we use a similar method to obtain the analytic form of the local power 
distribution. Let us define the power distribution at the kth level of renormalization 
Pk(j3)dp as the number of bonds carrying power with j3<-logpi<j3+dj3, we also 
denote P f ( j 3 )  as the power distribution of the good conductors and PQ@) that of the 
poor conductors so that P k ( / 3 )  = P&9)  + P f ( j 3 ) .  The initial condition at the nth level of 
renormalization (k=n)  is P I P )  and Pi(j3)  = O .  We follow closely the derivation 
of the current distribution in the preceding section to obtain the local power 
distribution. Without loss of generality, we again consider the limit h,=2&,41.  
Again we take f= $. In the good conducting bonds 

1.1 , 
1 

0.9 
0.8 
0.7 

3 0.6 .z 0.5 
-j" 0.4 
6 5 0.3 
0.2 
0.1 

0 
0 5 10 1.5 20 25 30 35 

APk 
FigureS. The cumulative histogram for the current distribution in the deterministic 
percolation model and its Gaussian approximation (same data as in figure 4). 
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Take the logarithm of (27) and let p=-logpn and p'=-logpx+,,p' being the 
pre-image of p. Again we define the Laplace transform for the distribution functions 

K W Yu and P Y Tong 

at  the mth generation with initial conditions yo($) =I  and zo(s)=O. We obtain the 
following recursion relations 

y , ( s )  =(e-'p~ + k-'f13)ym-,(s) + e-J@5(n-m)2m_,(s) 

t m (s) = e-so2(n-m)ym-l(s) + (e-sfi4cm-m) + 2 e-@b)zm-,(s) 
(304 
(30b) 

where PI, . . . ,pa are parameters. We define f,(s) =y,(s) + z,(s) which is the moment 
generating function of Po(p) which is in turn the inverse Laplace transform off&). As 
in the preceding section, we expand the generating functions and the coefficients to 
second order ins.  Let 

The initial conditions are yo(s)=l and zo(s)=O and thus Go=Ho=Mo=No=O. The 
general solutions for ym(0) and ~ ~ ( 0 )  are the same as those for g,(s) and p,(s) 
respectively while the general solution of S, is given by 

S,= ( m ( ~ ~ m + s , ) ) 4 ~ .  (32) 

T, = (f,m4 + tzm3 + t3m2 + t@)4"'. (33) 

fe ,= f" (o ) ( l -~B)s+Q(B ' )s '+  . . .) (34) 

The general solution of T,, should be of the form 

Similarly the mean and the variance of the power distribution is given by the first two 
moments of the moment generating function f,(s) =y&) + z,(s) 

where (p'") is the mth moment of Po(p) 

\I P"PO(B) dP 

(B")= Po(B)d/3 
0 

We identify the mean and variance of Po(p) 

and 

( P ) =  -S"/4"=-(sln*+s2n) 

(p2)-(fi)'=2Tn/4"- (S,/4")2. 

(35) 

(37) 
We find that the mean varies with n as -n2, and the variance as n3, a dependence 
similar to that of the current distribution. We also check the Gaussian approximation 
in figure 6 and figure 7 for n = 8 ,  ho=10-6 where the analytic calculation gives 
S. = -19.229, T.=218.07, and (B2)-(,9)'= 66.399. 
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Figured Power distribution in the deterministic percolation model as compared to the 
Gaussian approximation. The size L = 2’ and h = 
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Figure7. The cumulative histogram for the power distribution in the deterministic 
percolation model and its Gaussian approximation (same data as in figure 6). 

6. Discussion and conclusion 

First of all, let us study the generality of the results. We have performed similar 
calculations in the two-component diamond lattice [13], which is the exact dual lattice 
of DPM. We also performed numerical simulations on two-dimensional random 
resistor networks [6]. To this end, we should remark that the minimum current is 
extremely difticult to determine accurately in numerical simulations. We instead 
determine the most probable current, which was shown to scale in the same way as the 
minimum current does. We obtained the same exp[-c(ln h)’] behaviour. It would be 
interesting to perform extensive numerical simulations especially in three dimensions 
to check the analytic results. 
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Secondly, we develop the multifractal aspect of the model, i.e. we compute the left 
side of the f(a) spectrum. We consider the partition function 

zip=L-<d 

according to multifractal analysis [lo]. For h = l ,  we find r(q)=Z(l-q), which 
indicates a constant-gap scaling. The f(a) spectrum is a single point at a =f=2. For 
h=O, we recover the deterministic fractal lattice of [E]. When h+O, the maximum 
current Imax+ 1. For q 3 0  and for sufficiently large size L=2", the partition function 
scales as 

zip;.(1+2-'29-'))n. 

We obtain z(q) = In[l + 2-(w-')]/ln 2. Tremblay er ul [14] did Monte Carlo simulations 
for integral values of q= 1, 2 and 3 only. We find r(l)= -0.585, z(2)= -0.167 and 
r(3) = -0.044, in qualitative agreements with the results z(1) = -0.98, r(2) = -0.82 
and r(3) = -0.77 of Tremblay er uf [14]; in particular the inequality Ir(4)l> Ir(q+ 1)1 
is strictly obeyed. One should not be surprised too much by such a discrepancy 
because deterministic fractral models can only capture qualitatively the scaling 
behaviour of percolation clusters. 

It would be nice to do some experiments on random resistor-capacitor networks 
[I21 in which the frequency-dependent admittance (G-ioC) of capacitors plays the 
same role as the small parameter h of the problem. Thus by varying the frequency w of 
the external alternating current, one might mimic the crossover behaviours described 
in this work. 

In conclusion, we present an analytical solution of the current distribution in the 
deterministic percolation model which consists of two types of conductance, parame- 
terized by the ratio h of poor to good conductance. Due to the iterative nature of the 
model, we are able to find exact recursion relations for the current distribution. For 
extremely small h such that hL"1, where L is the size of the lattice and q5 the 
crossover exponent, the current distribution is well approximated by a Gaussian with 
the mean varying with size as (log L)' while the variance as (log L)3. We find that 
D(a) da=exp(-A[a- B(log L)z]l(10gL)3), where D(a) d a  is the number of currents 
with a<-logZi<a+da; Zi is the current in bond i and A, B are constants. In the 
opposite limit hL% 1, the distribution reduces to the trivial form of a one-component 
percolating lattice. As a result, both the most probable current and the minimum 
current scale with L as exp[-constant (log L)']. We also examine the local power 
distribution and find similar scaling behaviour. 

Acknowledgment 

KWY acknowledges the support from the Direct Grant under Project Number 220- 
600-210 from the Chinese University. 

References 

[I] Rammal R, Tannous C. Breton P and Tremblay A-M S 1985 Phys. Reo. Leu, 54 1718 
[Z] de Arcangelis L, Redner S and Coniglio A 1985 Phys. Reo. B 31,4775; 1986 Phys. Reu. B 34 4656 
[3] de Arcangelis Land Coniglio A 1987 1. Star. Pkys. 43 935 
[4] Tremblay R R, Albinet G and Tremblay A-M S 1991 Phys. Reo. B 43 11546 

Tremblay A-M S, Fourcade B and Breton P 1989 Pkysica 1S7A 89 



Current diskibution in two-component percolation 4235 

[SI Kolek A 1992 Phys. Rev. B 45 205 
[6] Tong P Y and Yu K W 1993 J .  Phys. A: Math. Gen. 26 LI 19 

Yu K W and Tong P Y 1992 Phyx. Reo. B 46 12137 
[71 Blutnenfeld Rand Aharony A 198Y Phys. Rev. Leu. 62 2977 

Kahng B and Lee J 1990 J .  Phys. A: Math. Gen. 23 L747 
Stanley H E ,  Bunde A, Havlin S, Lee J ,  Roman E and Schwarzer S 1990 Physica 168A 23 
Mandelbrot B 8, Evertsz C J G and Hayakawa Y 1990 Phys. Rev. A 42 4528 

[8] Frixh U and Parisi G 1985 Turbulenceand Predictability ofCeophysicar Ffows and Climnre Dynnmics, 
Proc. lnf. School of Physics ‘Enrico Fermi’ ed M GM, R Benzi, and G Parisi (New York 
North-Holland) p 84 

[9] Halsey T C, Jensen M H, Kadanoff L P, Procaccia I, and Shraiman B I 1986 Phys. Reo. A 33 1141 
[lo] Lee I. Havlin S. and Stanley H E 1992 Phys. Rev. A 45 1035 
[ l l ]  Kirkpatrick S 1978 Proc. ETOPMl Conf., AIP ConJ Proc. 4079 

Kirkpatrick S 1979 Proc. Les Houches Summer School on Ill-Condensed Maffer ed R Balian, R 
Maynard and G Toulouse (Amsterdam: North-Holland) p 321 

[I21 Clerc J P, Giraud G, Laugier J M and Luck J M 1990 Ado. Phys. 39 191 
[I31 Berker A N and Ostlund S 1979 J. Phys. C: Solid Sfate Phys. 12 4961 

[I41 Tremblay R R, Albinet G and Tremblay A-M S 1992 Phys. Rev. B 45 755 
Yu K W and Tong P Y 1992 Phys. Rev. B 46 11487 


